Central limit theorems for additive functionals of ergodic Markov diffusions processes
نویسندگان
چکیده
We revisit functional central limit theorems for additive functionals of ergodic Markov diffusion processes. Translated in the language of partial differential equations of evolution, they appear as diffusion limits in the asymptotic analysis of FokkerPlanck type equations. We focus on the square integrable framework, and we provide tractable conditions on the infinitesimal generator, including degenerate or anomalously slow diffusions. We take advantage on recent developments in the study of the trend to the equilibrium of ergodic diffusions. We discuss examples and formulate open problems.
منابع مشابه
Additive Functionals for Discrete-time Markov Chains with Applications to Birth–death Processes
In this paper we are interested in bounding or calculating the additive functionals of the first return time on a set for discrete-time Markov chains on a countable state space, which is motivated by investigating ergodic theory and central limit theorems. To do so, we introduce the theory of the minimal nonnegative solution. This theory combined with some other techniques is proved useful for ...
متن کاملCENTRAL LIMIT THEOREMS FOR ADDITIVE FUNCTIONALS OF MARKOV CHAINS1 By Michael Maxwell and Michael Woodroofe
Central limit theorems and invariance principles are obtained for additive functionals of a stationary ergodic Markov chain, say Sn = g X1 + · · · + g Xn , where E g X1 =0 and E g X1 2 <∞. The conditions imposed restrict the moments of g and the growth of the conditional means E Sn X1 . No other restrictions on the dependence structure of the chain are required. When specialized to shift proces...
متن کاملAdditive Functionals of Infinite-variance Moving Averages
We consider the asymptotic behavior of additive functionals of linear processes with infinite variance innovations. Applying the central limit theory for Markov chains, we establish asymptotic normality for short-range dependent processes. A non-central limit theorem is obtained when the processes are long-range dependent and the innovations are in the domain of attraction of stable laws.
متن کاملFeynman-kac Penalisations of Symmetric Stable Pro- Cesses
In [9], [10], B. Roynette, P. Vallois and M. Yor have studied limit theorems for Wiener processes normalized by some weight processes. In [16], K. Yano, Y. Yano and M. Yor studied the limit theorems for the one-dimensional symmetric stable process normalized by non-negative functions of the local times or by negative (killing) Feynman-Kac functionals. They call the limit theorems for Markov pro...
متن کاملStrong Law of Large Numbers and Central Limit Theorems for functionals of inhomogeneous Semi-Markov processes
Abstract: Limit theorems for functionals of classical (homogeneous) Markov renewal and semi-Markov processes have been known for a long time, since the pioneering work of R. Pyke and R. Schaufele (1964). Since then, these processes, as well as their time-inhomogeneous generalizations, have found many applications, for example in finance and insurance. Unfortunately, no limit theorems have been ...
متن کامل